March 27, 2025

N-Chiropractors

A Passion for Better Health

Biomaterials science and surface engineering strategies for dental peri-implantitis management | Military Medical Research

Biomaterials science and surface engineering strategies for dental peri-implantitis management | Military Medical Research
  • Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Clin Periodontol. 2018;45(Suppl 20):S246–66.

    PubMed 

    Google Scholar
     

  • Wilson V. An insight into peri-implantitis: a systematic literature review. Prim Dent J. 2013;2(2):69–73.

    Article 
    PubMed 

    Google Scholar
     

  • Belibasakis GN, Manoil D. Microbial community-driven etiopathogenesis of peri-implantitis. J Dent Res. 2021;100(1):21–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berglundh T, Jepsen S, Stadlinger B, Terheyden H. Peri-implantitis and its prevention. Clin Oral Implants Res. 2019;30(2):150–55.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen-Hieu T, Borghetti A, Aboudharam G. Peri‐implantitis: from diagnosis to therapeutics. J Investig Clin Dent. 2012;3(2):79–94.

    Article 
    PubMed 

    Google Scholar
     

  • Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol. 2008;35(8 Suppl):286–91.

    Article 
    PubMed 

    Google Scholar
     

  • Kordbacheh Changi K, Finkelstein J, Papapanou PN. Peri-implantitis prevalence, incidence rate, and risk factors: a study of electronic health records at a US dental school. Clin Oral Implants Res. 2019;30(4):306–14.

    Article 
    PubMed 

    Google Scholar
     

  • Lee C-T, Huang Y-W, Zhu L, Weltman R. Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent. 2017;62:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Dixon DR, London RM. Restorative design and associated risks for peri-implant diseases. Periodontol 2000. 2019;81(1):167–78.

    Article 
    PubMed 

    Google Scholar
     

  • Daubert DM, Weinstein BF, Bordin S, Leroux BG, Flemmig TF. Prevalence and predictive factors for peri-implant disease and implant failure: a cross‐sectional analysis. J Periodontol. 2015;86(3):337–47.

    Article 
    PubMed 

    Google Scholar
     

  • Mahato N, Wu X, Wang L. Management of peri-implantitis: a systematic review, 2010–2015. SpringerPlus. 2016;5:105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Zhang Y, Miron RJ. Health, maintenance, and recovery of soft tissues around implants. Clin Implant Dent Relat Res. 2016;18(3):618–34.

    Article 
    PubMed 

    Google Scholar
     

  • Kotsailidi EA, Michelogiannakis D, Al-Zawawi AS, Javed F. Surgical or non-surgical treatment of peri-implantitis—what is the verdict? Surg Pract Sci. 2020;1:100010.

    Article 

    Google Scholar
     

  • de Almeida JM, Matheus HR, Rodrigues Gusman DJ, Faleiros PL, Januário de Araújo N, Noronha Novaes VC. Effectiveness of mechanical debridement combined with adjunctive therapies for nonsurgical treatment of periimplantitis: a systematic review. Implant Dent. 2017;26(1):137–44.

    Article 
    PubMed 

    Google Scholar
     

  • Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis. 2022;60(8–9):e23499.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munakata M, Suzuki A, Yamaguchi K, Kataoka Y, Sanda M. Effects of implant surface mechanical instrumentation methods on peri-implantitis: an in vitro study using a circumferential bone defect model. J Dent Sci. 2022;17(2):891–6.

    Article 
    PubMed 

    Google Scholar
     

  • Wang CY, Yang YH, Li H, Lin PY, Su YT, Kuo MYP, et al. Adjunctive local treatments for patients with residual pockets during supportive periodontal care: a systematic review and network meta-analysis. J Clin Periodontol. 2020;47(12):1496–510.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhou Y, Liu X, Zhao W, Zhao G, Zheng J, et al. Which adjuvant laser therapy is superior to debridement alone and best promotes anti-inflammation and regeneration in peri-implantitis? A systematic review and network meta-analysis. Opt Laser Technol. 2024;168:109870.

    Article 
    CAS 

    Google Scholar
     

  • Mordini L, Sun N, Chang N, de Guzman J-P, Generali L, Consolo U. Peri-implantitis regenerative therapy: a review. Biology. 2021;10(8):773.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis. 2020;2(2):100–16.

    Article 

    Google Scholar
     

  • Pieralli S, Kohal RJ, Jung RE, Vach K, Spies BC. Clinical outcomes of zirconia dental implants: a systematic review. J Dent Res. 2017;96(1):38–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra S, Chowdhary R. PEEK materials as an alternative to titanium in dental implants: a systematic review. Clin Implant Dent Relat Res. 2019;21(1):208–22.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Z, Wang Z, Qiu W, Fang F. Overview of antibacterial strategies of dental implant materials for the prevention of peri-implantitis. Bioconjug Chem. 2021;32(4):627–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong H, Liu H, Zhou N, Li Q, Yang G, Chen L, et al. Surface modified techniques and emerging functional coating of dental implants. Coatings. 2020;10(11):1012.

    Article 
    CAS 

    Google Scholar
     

  • Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface modifications of high-performance polymer polyetheretherketone (PEEK) to improve its biological performance in dentistry. Polymers. 2022;14(24):5526.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurup A, Dhatrak P, Khasnis N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: a review. Mater Today Proc. 2021;39(1):84–90.

    Article 
    CAS 

    Google Scholar
     

  • Makvandi P, Song H, Yiu CK, Sartorius R, Zare EN, Rabiee N, et al. Bioengineered materials with selective antimicrobial toxicity in biomedicine. Mil Med Res. 2023;10(1):8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseinpour S, Nanda A, Walsh LJ, Xu C. Microbial decontamination and antibacterial activity of nanostructured titanium dental implants: a narrative review. Nanomaterials. 2021;11(9):2336.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimabukuro M. Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: a review. Antibiotics. 2020;9(10):716.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asensio G, Vázquez-Lasa B, Rojo L. Achievements in the topographic design of commercial titanium dental implants: towards anti-peri-implantitis surfaces. J Clin Med. 2019;8(11):1982.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteves GM, Esteves J, Resende M, Mendes L, Azevedo AS. Antimicrobial and antibiofilm coating of dental implants—past and new perspectives. Antibiotics. 2022;11(2):235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khurshid Z, Hafeji S, Tekin S, Habib SR, Ullah R, Sefat F, et al. Titanium, zirconia, and polyetheretherketone (PEEK) as a dental implant material. In: Dental Implants. Amsterdam: Elsevier; 2020. p. 5–35.

    Chapter 

    Google Scholar
     

  • Ma Z, Zhao X, Zhao J, Zhao Z, Wang Q, Zhang C. Biologically modified polyether ether ketone as dental implant material. Front Bioeng Biotechnol. 2020;8:620537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler L, Janson O, Engqvist H, Norgren S, Öhman-Mägi C. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test. Mater Sci Eng C Mater Biol Appl. 2019;97:707–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • do Nascimento C, da Rocha Aguiar C, Pita MS, Pedrazzi V, de Albuquerque RF Jr, Ribeiro RF. Oral biofilm formation on the titanium and zirconia substrates. Microsc Res Tech. 2013;76(2):126–32.

    Article 
    PubMed 

    Google Scholar
     

  • Gorth DJ, Puckett S, Ercan B, Webster TJ, Rahaman M, Bal BS. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium. Int J Nanomed. 2012;7:4829–40.

    CAS 

    Google Scholar
     

  • Osman MA, Kushnerev E, Alamoush RA, Seymour KG, Yates JM. Two gingival cell lines response to different dental implant abutment materials: an in vitro study. Dent J. 2022;10(10):192.

    Article 

    Google Scholar
     

  • Scarano A, Piattelli A, Polimeni A, di Iorio D, Carinci F. Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws: an in vivo human study. J Periodontol. 2010;81(10):1466–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anil S, Anand P, Alghamdi H, Jansen J. Dental implant surface enhancement and osseointegration. Implant Dentistry–A Rapidly Evolving Practice. 83; 2011. p. 108.


    Google Scholar
     

  • Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020;24(12):4237–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah SR, Tatara AM, D’Souza RN, Mikos AG, Kasper FK. Evolving strategies for preventing biofilm on implantable materials. Mater Today. 2013;16(5):177–82.

    Article 
    CAS 

    Google Scholar
     

  • Kensara A, Saito H, Mongodin EF, Masri R. Microbiological profile of peri-implantitis: analyses of microbiome within dental implants. J Prosthodont. 2023;32(9):783–92.

    Article 
    PubMed 

    Google Scholar
     

  • Scarano A, Khater AGA, Gehrke SA, Serra P, Francesco I, di Carmine M, et al. Current status of peri-implant diseases: a clinical review for evidence-based decision making. J Funct Biomater. 2023;14(4):210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HJ, Ahn DH, Yu Y, Han H, Kim SY, Joo JY, et al. Microbial profiling of peri-implantitis compared to the periodontal microbiota in health and disease using 16S rRNA sequencing. J Periodontal Implant Sci. 2023;53(1):69–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laosuwan K, Epasinghe DJ, Wu Z, Leung WK, Green DW, Jung HS. Comparison of biofilm formation and migration of Streptococcus mutans on tooth roots and titanium miniscrews. Clin Exp Dent Res. 2018;4(2):40–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng H, Yuan Y, Adayi A, Zhang X, Song X, Gong L, et al. Engineered chimeric peptides with antimicrobial and titanium-binding functions to inhibit biofilm formation on Ti implants. Mater Sci Eng C Mater Biol Appl. 2018;82:141–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar PS, Mason MR, Brooker MR, O’Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 2012;39(5):425–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabdoub SM, Tsigarida AA, Kumar PS. Patient-specific analysis of periodontal and peri-implant microbiomes. J Dent Res. 2013;92(12 Suppl):S168–75.

    Article 

    Google Scholar
     

  • Maruyama N, Maruyama F, Takeuchi Y, Aikawa C, Izumi Y, Nakagawa I. Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep. 2014;4:6602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu XL, Chan Y, Zhuang L, Lai HC, Lang NP, Keung Leung W, et al. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. Clin Oral Implants Res. 2019;30(8):760–76.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan S, Fang C, Leng WD, Wu L, Li BH, Wang XH, et al. Oral microbiota in the oral-genitourinary axis: identifying periodontitis as a potential risk of genitourinary cancers. Mil Med Res. 2021;8:1–14.


    Google Scholar
     

  • de Lafuente-Ibáñez I, Cayero-Garay A, Quindós-Andrés G, Aguirre-Urizar JM. A systematic review on the implication of Candida in peri-implantitis. Int J Implant Dent. 2021;7(1):73.

    Article 

    Google Scholar
     

  • Pérez-Chaparro PJ, Duarte PM, Shibli JA, Montenegro S, Lacerda Heluy S, Figueiredo LC, et al. The current weight of evidence of the microbiologic profile associated with peri-implantitis: a systematic review. J Periodontol. 2016;87(11):1295–304.

    Article 
    PubMed 

    Google Scholar
     

  • Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romanò CL, Romanò D, Logoluso N, Drago L. Bone and joint infections in adults: a comprehensive classification proposal. Eur Orthop Traumatol. 2011;1(6):207–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fürst MM, Salvi GE, Lang NP, Persson GR. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res. 2007;18(4):501–08.

    Article 
    PubMed 

    Google Scholar
     

  • Persson GR, Renvert S. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res. 2014;16(6):783–93.

    Article 
    PubMed 

    Google Scholar
     

  • Lafaurie GI, Sabogal MA, Castillo DM, Rincón MV, Gómez LA, Lesmes YA, et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review. J Periodontol. 2017;88(10):1066–89.

    Article 
    PubMed 

    Google Scholar
     

  • Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: scientific discoveries shed light on microbiome‐biomaterial interactions that may determine disease phenotype. Periodontol 2000. 2021;86(1):231–40.

    Article 
    PubMed 

    Google Scholar
     

  • Koyanagi T, Sakamoto M, Takeuchi Y, Maruyama N, Ohkuma M, Izumi Y. Comprehensive microbiological findings in peri-implantitis and periodontitis. J Clin Periodontol. 2013;40(3):218–26.

    Article 
    PubMed 

    Google Scholar
     

  • Rajasekar A, Varghese SS. Microbiological profile in periodontitis and peri-implantitis: a systematic review. J Long Term Eff Med Implants. 2022;32(4):83–94.

    Article 
    PubMed 

    Google Scholar
     

  • Wu L, Li BH, Wang YY, Wang CY, Zi H, Weng H, et al. Periodontal disease and risk of benign prostate hyperplasia: a cross-sectional study. Mil Med Res. 2019;6:1–8.


    Google Scholar
     

  • Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants: a model study in the dog. Clin Oral Implants Res. 2003;14(3):251–62.

    Article 
    PubMed 

    Google Scholar
     

  • Zarb GA, Koka S. Osseointegration: promise and platitudes. Int J Prosthodont. 2012;25(1):11–2.

    PubMed 

    Google Scholar
     

  • Belibasakis GN. Microbiological and immuno-pathological aspects of peri-implant diseases. Arch Oral Biol. 2014;59(1):66–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes MH, de Sousa Gomes P. Bone cells dynamics during peri-implantitis: a theoretical analysis. J Oral Maxillofac Res. 2016;7(3):e6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li JY, Wang H-L. Biomarkers associated with periimplant diseases. Implant Dent. 2014;23(5):607–11.

    PubMed 

    Google Scholar
     

  • Albrektsson T, Tengvall P, Amengual L, Coli P, Kotsakis G, Cochran D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol. 2022;13:1056914.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subbiahdoss G, Kuijer R, Grijpma DW, van der Mei HC, Busscher HJ. Microbial biofilm growth vs. tissue integration:the race for the surface experimentally studied. Acta Biomater. 2009;5(5):1399–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wassmann T, Kreis S, Behr M, Buergers R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent. 2017;3(1):32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitzmann NU, Abrahamsson I, Berglundh T, Lindhe J. Soft tissue reactions to plaque formation at implant abutments with different surface topography: an experimental study in dogs. J Clin Periodontol. 2002;29(5):456–61.

    Article 
    PubMed 

    Google Scholar
     

  • Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010;89(7):657–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seneviratne CJ, Zhang CF, Samaranayake LP. Dental plaque biofilm in oral health and disease. Chin J Dent Res. 2011;14(2):87–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Ivanovski S, Bartold PM, Huang YS. The role of foreign body response in peri-implantitis: what is the evidence? Periodontol 2000. 2022;90(1):176–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri‐implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World workshop on the classification of Periodontal and Peri‐Implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S313–8.

    PubMed 

    Google Scholar
     

  • Froum SJ, Rosen PS. A proposed classification for peri-implantitis. Int J Periodontics Restor Dent. 2012;32(5):533–40.


    Google Scholar
     

  • Al-Sabbagh M, Shaddox LM. Is peri-implantitis curable? Dent Clin North Am. 2019;63(3):547–66.

    Article 
    PubMed 

    Google Scholar
     

  • Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci. 2019;11(3):28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris LG, Tosatti S, Wieland M, Textor M, Richards R. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (L-lysine)-grafted-poly (ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narendrakumar K, Kulkarni M, Addison O, Mazare A, Junkar I, Schmuki P, et al. Adherence of oral streptococci to nanostructured titanium surfaces. Dent Mater. 2015;31(12):1460–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin N, Huang X, Zou J, Zhang X, Qin L, Fan A, et al. Effects of plasma nitriding and multiple arc ion plating TiN coating on bacterial adhesion of commercial pure titanium via in vitro investigations. Surf Coat Technol. 2012;209:212–5.

    Article 
    CAS 

    Google Scholar
     

  • Scarano A, Piattelli M, Vrespa G, Caputi S, Piattelli A. Bacterial adhesion on titanium nitride-coated and uncoated implants: an in vivo human study. J Oral Implantol. 2003;29(2):80–5.

    Article 
    PubMed 

    Google Scholar
     

  • Buxadera-Palomero J, Canal C, Torrent-Camarero S, Garrido B, Javier Gil F, Rodríguez D. Antifouling coatings for dental implants: polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases. 2015;10(2):029505.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng G, Ogaki R, Meyer RL. Non-proteinaceous bacterial adhesins challenge the antifouling properties of polymer brush coatings. Acta Biomater. 2015;24:64–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayles A, Hasan J, Bright R, Wood J, Palms D, Zilm P, et al. Spiked titanium nanostructures that inhibit anaerobic dental pathogens. ACS Appl Nano Mater. 2022;5(9):12051–62.

    Article 
    CAS 

    Google Scholar
     

  • Mukaddam K, Astasov-Frauenhoffer M, Fasler-Kan E, Marot L, Kisiel M, Steiner R, et al. Novel titanium nanospike structure using low-energy Helium ion bombardment for the transgingival part of a dental implant. Nanomaterials. 2022;12(7):1065.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun H, Hong Y, Xi Y, Zou Y, Gao J, Du J. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide-polymer conjugates. Biomacromolecules. 2018;19(6):1701–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8:1–25.


    Google Scholar
     

  • Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949–59.

    Article 

    Google Scholar
     

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5(16):12293–9.

    Article 
    CAS 

    Google Scholar
     

  • Yue J, Jin Z, Poon HLE, Shang G, Liu H, Wang D, et al. Osteogenic and antibacterial activity of a plasma-sprayed CeO2 coating on a titanium (Ti)-based dental implant. Coatings. 2020;10(10):1007.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Fan H, Zhang F, Zhao S, Liu Y, Xu Y, et al. Antibacterial properties of bilayer biomimetic nano-ZnO for dental implants. ACS Biomater Sci Eng. 2020;6(4):1880–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin W, Ma J, Liang Q, Li J, Tang B. Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon fibers/polyetheretherketone composite coatings on Ti-6Al-4V alloy as orthopedic/dental implants. J Mech Behav Biomed Mater. 2021;122:104659.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu M, Lv L, Du F, Niu T, Chen T, Xia D, et al. Effects of thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates. Sci Rep. 2018;8(1):8141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suo L, Jiang N, Wang Y, Wang P, Chen J, Pei X, et al. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J Biomed Mater Res B Appl Biomater. 2019;107(3):635–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Z, Krajewski S, Weindl T, Loeffler R, Li P, Han X, et al. Application of totarol as natural antibacterial coating on dental implants for prevention of peri-implantitis. Mater Sci Eng C Mater Biol Appl. 2020;110:110701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y, Wu J, Gao B, Zhao X, Yao J, Mei S, et al. Fabrication and in vitro release behavior of a novel antibacterial coating containing halogenated furanone-loaded poly (L-lactic acid) nanoparticles on microarc-oxidized titanium. Int J Nanomed. 2012;7:5641–52.

    CAS 

    Google Scholar
     

  • Chen M, Ouyang L, Lu T, Wang H, Meng F, Yang Y, et al. Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketone. ACS Appl Mater Interfaces. 2017;9(20):16824–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang L, Li B, Han Y. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. ACS Appl Mater Interfaces. 2017;9(11):9449–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Ge Y, Yang B, Han Q, Zhou W, Liang J, et al. Novel dental implant modifications with two-staged double benefits for preventing infection and promoting osseointegration in vivo and in vitro. Bioact Mater. 2021;6(12):4568–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi J, Liu Y, Wang Y, Zhang J, Zhao S, Yang G. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep. 2015;5:6336.

    Article 

    Google Scholar
     

  • Govindharajulu JP, Chen X, Li Y, Rodriguez-Cabello JC, Battacharya M, Aparicio C. Chitosan-Recombinamer layer-by-layer coatings for multifunctional implants. Int J Mol Sci. 2017;18(2):369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Yan J, Yin Z, Tang C, Guo Y, Li D, et al. Electrospun Vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomed. 2014;9:3027–36.

    CAS 

    Google Scholar
     

  • Wu S, Xu J, Zou L, Luo S, Yao R, Zheng B, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun. 2021;12(1):3303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu R, Tang Y, Liu H, Zeng L, Ma Z, Li J, et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. J Mater Sci Technol. 2020;47:202–15.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Liu L, Wan P, Zhai Z, Mao Z, Ouyang Z et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations. Biomaterials. 2016;106:250–263.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu R, Tang Y, Zeng L, Zhao Y, Ma Z, Sun Z, et al. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater. 2018;34(8):1112–26.

    Article 
    PubMed 

    Google Scholar
     

  • Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren X, Gao R, van der Mei HC, Ren Y, Peterson BW, Busscher HJ. Eradicating infecting bacteria while maintaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Appl Mater Interfaces. 2020;12(31):34610–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang M, Qiu S, Coy E, Li S, Załęski K, Zhang Y, et al. NIR-responsive TiO2 biometasurfaces: toward in situ photodynamic antibacterial therapy for biomedical implants. Adv Mater. 2022;34(6):e2106314.

    Article 
    PubMed 

    Google Scholar
     

  • Yu YL, Wu JJ, Lin CC, Qin X, Tay FR, Miao L, et al. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil Med Res. 2023;10(1):21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan L, Li J, Liu X, Cui Z, Yang X, Zhu S, et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv Mater. 2018;30(31):e1801808.

    Article 
    PubMed 

    Google Scholar
     

  • Liu X, Chen S, Tsoi JK, Matinlinna JP. Binary titanium alloys as dental implant materials-a review. Regen Biomater. 2017;4(5):315–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCracken M. Dental implant materials: commercially pure titanium and titanium alloys. J Prosthodont. 1999;8(1):40–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(Suppl 4):172–84.

    Article 
    PubMed 

    Google Scholar
     

  • Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent. 2000;84(5):522–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.

    Article 
    PubMed 

    Google Scholar
     

  • Matos GRM. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg. 2021;20(1):1–4.

    Article 
    PubMed 

    Google Scholar
     

  • Mandracci P, Mussano F, Rivolo P, Carossa S. Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings. 2016;6(1):7.

    Article 

    Google Scholar
     

  • Li X, Qi M, Sun X, Weir MD, Tay FR, Oates TW, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019;94:627–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mangano FG, Pires JT, Shibli JA, Mijiritsky E, Iezzi G, Piattelli A, et al. Early bone response to dual acid-etched and machined dental implants placed in the posterior maxilla: a histologic and histomorphometric human study. Implant Dent. 2017;26(1):24–9.

    Article 
    PubMed 

    Google Scholar
     

  • Alovisi M, Carossa M, Mandras N, Roana J, Costalonga M, Cavallo L, et al. Disinfection and biocompatibility of titanium surfaces treated with glycine powder airflow and triple antibiotic mixture: an in vitro study. Materials. 2022;15(14):4850.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bermejo P, Sánchez MC, Llama-Palacios A, Figuero E, Herrera D, Sanz Alonso M. Biofilm formation on dental implants with different surface micro‐topography: an in vitro study. Clin Oral Implants Res. 2019;30(8):725–34.

    Article 
    PubMed 

    Google Scholar
     

  • Jeong WS, Kwon JS, Lee JH, Uhm SH, Choi EH, Kim K-M. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma. Biomed Mater. 2017;12(4):045015.

    Article 
    PubMed 

    Google Scholar
     

  • Drago L, Bortolin M, De Vecchi E, Agrappi S, Weinstein RL, Mattina R, et al. Antibiofilm activity of sandblasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions. J Chemother. 2016;28(5):383–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Zhou W, Zhou X, Hu Y, Xiang P, Li B, et al. Effect of novel micro-arc oxidation implant material on preventing peri-implantitis. Coatings. 2019;9(11):691.

    Article 
    CAS 

    Google Scholar
     

  • Souza JGS, Bertolini M, Costa RC, Cordeiro JM, Nagay BE, de Almeida AB, et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface. ACS Appl Mater Interfaces. 2020;12(9):10118–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giordano C, Saino E, Rimondini L, Pedeferri MP, Visai L, Cigada A, et al. Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6Al4V alloy for dental and orthopedic devices. Colloids Surf B Biointerfaces. 2011;88(2):648–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou P, Mao F, He F, Han Y, Li H, Chen J, et al. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants. Colloids Surf B Biointerfaces. 2019;178:515–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou P, Long S, Mao F, Huang H, Li H, He F, et al. Controlling cell viability and bacterial attachment through fabricating extracellular matrix-like micro/nanostructured surface on titanium implant. Biomed Mater. 2020;15(3):035002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahmati M, Lyngstadaas SP, Reseland JE, Andersbakken I, Haugland HS, López-Peña M, et al. Coating doxycycline on titanium-based implants: two in vivo studies. Bioact Mater. 2020;5(4):787–97.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter MS, Frank MJ, Satué M, Monjo M, Rønold HJ, Lyngstadaas SP, et al. Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo. Dent Mater. 2014;30(2):200–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tambone E, Bonomi E, Ghensi P, Maniglio D, Ceresa C, Agostinacchio F, et al. Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study. BMC Oral Health. 2021;21(1):49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent. 2014;42(11):1464–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Jin S, Delgado AH, Chen Z, Matinlinna JP, Tsoi JK-H. Self-assembled PHMB titanium coating enables anti-fusobacterium nucleatum strategy. Coatings. 2021;11(10):1190.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Wu G, Liu X, Sun G, Li D, Wei H. A decomposable silica-based antibacterial coating for percutaneous titanium implant. Int J Nanomed. 2017;12:371–9.

    Article 
    CAS 

    Google Scholar
     

  • Carinci F, Lauritano D, Bignozzi CA, Pazzi D, Candotto V, Santos de Oliveira P, et al. A new strategy against peri-implantitis: antibacterial internal coating. Int J Mol Sci. 2019;20(16):3897.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinbold J, Uhde A-K, Müller I, Weindl T, Geis-Gerstorfer J, Schlensak C, et al. Preventing surgical site infections using a natural, biodegradable, antibacterial coating on surgical sutures. Molecules. 2017;22(9):1570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza C, Watanabe E, Borgheti-Cardoso LN, Fantini MCDA, Lara MG. Mucoadhesive system formed by liquid crystals for buccal administration of poly (hexamethylene biguanide) hydrochloride. J Pharm Sci. 2014;103(12):3914–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Persson GR, Salvi GE, Heitz-Mayfield LJ, Lang NP. Antimicrobial therapy using a local drug delivery system (Arestin®) in the treatment of peri‐implantitis. I: microbiological outcomes. Clin Oral Implants Res. 2006;17(4):386–93.

    Article 
    PubMed 

    Google Scholar
     

  • Zammit EJ, Theuma KB, Darmanin S, Muraglia M, Camilleri-Podesta MT, Buhagiar JA, et al. Totarol content and cytotoxicity varies significantly in different types of propolis. RJPBCS. 2013;4(3):1047–58.


    Google Scholar
     

  • Christen V, Faltermann S, Brun NR, Kunz PY, Fent K. Cytotoxicity and molecular effects of biocidal disinfectants (quaternary ammonia, glutaraldehyde, poly (hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos. Sci Total Environ. 2017;586:1204–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song H, Fares M, Maguire KR, Sidén Å, Potácová Z. Cytotoxic effects of tetracycline analogues (doxycycline, minocycline and COL-3) in acute myeloid leukemia HL-60 cells. PLoS One. 2014;9(12):e114457.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018;24(6):747–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6(10):e1001067.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr S-U, Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013;9(9):8224–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Ma S, Duan S, Xuliang D, Sun Y, Zhang X, et al. Modification of titanium substrates with chimeric peptides comprising antimicrobial and titanium-binding motifs connected by linkers to inhibit biofilm formation. ACS Appl Mater Interfaces. 2016;8(8):5124–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godoy-Gallardo M, Wang Z, Shen Y, Manero JM, Gil FJ, Rodriguez D, et al. Antibacterial coatings on titanium surfaces: a comparison study between in vitro single-species and multispecies biofilm. ACS Appl Mater Interfaces. 2015;7(10):5992–6001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong L, Geng H, Zhang X, Gao P. Comparison of the structure and function of a chimeric peptide modified titanium surface. RSC Adv. 2019;9(45):26276–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Yang Y, Zhang H, Xu Z, Zhao L, Wang J, et al. Improvements on biological and antimicrobial properties of titanium modified by AgNPs-loaded chitosan-heparin polyelectrolyte multilayers. J Mater Sci Mater Med. 2019;30(5):52.

    Article 
    PubMed 

    Google Scholar
     

  • Cochis A, Ferraris S, Sorrentino R, Azzimonti B, Novara C, Geobaldo F, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing. J Mater Chem B. 2017;5(42):8366–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi SH, Jang YS, Jang JH, Bae TS, Lee SJ, Lee MH. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application. J Appl Biomater Funct Mater. 2019;17(3):2280800019847067.

    PubMed 

    Google Scholar
     

  • Massa MA, Covarrubias C, Bittner M, Fuentevilla IA, Capetillo P, Von Marttens A, et al. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;45:146–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Liu Q, Jia Z, Xu X, Shi Y, Cheng Y, et al. Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegration functions. J Mater Chem B. 2015;3(45):8796–805.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Astasov-Frauenhoffer M, Koegel S, Waltimo T, Zimmermann A, Walker C, Hauser-Gerspach I, et al. Antimicrobial efficacy of copper-doped titanium surfaces for dental implants. J Mater Sci Mater Med. 2019;30(7):84.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Fu S, Yang L, Qin G, Zhang E. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity. J Mater Sci Technol. 2022;97(2):201–12.

    Article 
    CAS 

    Google Scholar
     

  • He B, Xin C, Chen Y, Xu Y, Zhao Q, Hou Z, et al. Biological performance and tribocorrosion behavior of in-situ synthesized CuxO/TiO2 coatings. Appl Surf Sci. 2022;600:154096.

    Article 
    CAS 

    Google Scholar
     

  • Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo Q, Cao H, Wang L, Ma X, Liu X. ZnO@ ZnS nanorod-array coated titanium: good to fibroblasts but bad to bacteria. J Colloid Interface Sci. 2020;579:50–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi S, Wu J, Xu Y, Zhang Y, Wang R, Li K, et al. Chemical stability and antimicrobial activity of plasma-sprayed cerium oxide–incorporated calcium silicate coating in dental implants. Implant Dent. 2019;28(6):564–70.

    PubMed 

    Google Scholar
     

  • Moreira H, Costa-Barbosa A, Marques SM, Sampaio P, Carvalho S. Evaluation of cell activation promoted by tantalum and tantalum oxide coatings deposited by reactive DC magnetron sputtering. Surf Coat Technol. 2017;330:260–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Y, Gu Y, Qiao S, Zhou L, Shi J, Lai H. Bacterial and mammalian cells adhesion to tantalum-decorated micro‐/nano‐structured titanium. J Biomed Mater Res A. 2017;105(3):871–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X-M, Li Y, Gu YX, Zhang CN, Lai HC, Shi JY. Ta-coated titanium surface with superior bacteriostasis and osseointegration. Int J Nanomed. 2019;14:8693–706.

    Article 
    CAS 

    Google Scholar
     

  • Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013;24(6):1465–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 2008;112(15):5825–34.

    Article 

    Google Scholar
     

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ. 2010;408(5):999–1006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Colloids Surf B Biointerfaces. 2018;171:597–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pokrowiecki R, Zaręba T, Szaraniec B, Pałka K, Mielczarek A, Menaszek E, et al. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int J Nanomed. 2017;12:4285–97.

    Article 
    CAS 

    Google Scholar
     

  • Besinis A, De Peralta T, Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8(7):745–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Liao J, Anchun M, Zhu Z, Quan Y. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomed. 2010;5:337–42.

    CAS 

    Google Scholar
     

  • Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):e1701503.

    Article 
    PubMed 

    Google Scholar
     

  • Taglietti A, Arciola CR, D’Agostino A, Dacarro G, Montanaro L, Campoccia D, et al. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 2014;35(6):1779–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother. 2007;59(4):587–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He W, Zheng Y, Feng Q, Elkhooly TA, Liu X, Yang X, et al. Silver nanoparticles stimulate osteogenesis of human mesenchymal stem cells through activation of autophagy. Nanomedicine. 2020;15(4):337–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Lee P, Lui VCH, Chen Y, Liu X, Lok CN, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015;11(8):1949–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Zheng B, He J, Cui Z, Liu Y. Silver nanoparticles promote osteogenic differentiation of human periodontal ligament fibroblasts by regulating the RhoA-TAZ axis. Cell Biol Int. 2019;43(8):910–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albashari AA, He Y, Albaadani MA, Xiang Y, Ali J, Hu F, et al. Titanium Nanotube Modified with Silver Cross-linked Basic Fibroblast growth factor improves osteoblastic activities of Dental Pulp Stem cells and Antibacterial Effect. Front Cell Dev Biol. 2021;9:654654.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents. 2012;40(2):135–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, et al. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small. 2012;8(21):3326–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009;33(6):587–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan J, Xia D, Zhou W, Li Y, Xiong P, Li Q, et al. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomater. 2020;115:220–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenbaum J, Versace DL, Abbad-Andallousi S, Pires R, Azevedo C, Cénédese P, et al. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants. Biomater Sci. 2017;5(3):455–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Li J, Wang X, Wang Y, Hang R, Huang X, et al. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C Mater Biol Appl. 2018;82:110–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Ding G, Li J, Yang S, Fang B, Sun H, et al. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans. Appl Surf Sci. 2010;256(24):7540–4.

    Article 
    CAS 

    Google Scholar
     

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219–42.

    CAS 
    PubMed 

    Google Scholar
     

  • San Miguel SM, Opperman LA, Allen EP, Zielinski JE, Svoboda KK. Antioxidant combinations protect oral fibroblasts against metal-induced toxicity. Arch Oral Biol. 2013;58(3):299–310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, Kang B, Hicks B, Chancellor TF Jr, Chu BH, Wang H-T, et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials. 2008;29(27):3743–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaveri TD, Dolgova NV, Chu BH, Lee J, Wong J, Lele TP, et al. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials. 2010;31(11):2999–3007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010;199(3):389–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnol. 2019;17(1):84.

    Article 

    Google Scholar
     

  • Meng X, Zhang W, Lyu Z, Long T, Wang Y. ZnO nanoparticles attenuate polymer-wear-particle induced inflammatory osteolysis by regulating the MEK-ERK-COX-2 axis. J Orthop Translat. 2022;34:1–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-based therapeutic antioxidants for biomedical applications. Adv Mater. 2024;36(10):e2210819.

    Article 
    PubMed 

    Google Scholar
     

  • Singhania N, Anumol E, Ravishankar N, Madras G. Influence of CeO2 morphology on the catalytic activity of CeO 2–Pt hybrids for CO oxidation. Dalton Trans. 2013;42(43):15343–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, Di Pietro L, et al. Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochim Biophys Acta Biomembr. 2018;1860(11):2428–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 2010;6(8):3349–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu T, Wen J, Qian S, Cao H, Ning C, Pan X, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials. 2015;51:173–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokarski AT, Novack TA, Parvizi J. Is tantalum protective against infection in revision total hip arthroplasty? Bone Joint J. 2015;97–B(1):45–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zheng Y, Li Y, Wang L, Bai Y, Zhao Q, et al. Tantalum Nitride-decorated titanium with enhanced resistance to microbiologically induced corrosion and mechanical property for dental application. PLoS One. 2015;10(6):e0130774.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badran Z, Struillou X, Hughes FJ, Soueidan A, Hoornaert A, Ide M. Silicon Nitride (Si3N4) implants: the future of dental implantology? J Oral Implantol. 2017;43(3):240–44.

    Article 
    PubMed 

    Google Scholar
     

  • Pera F, Menini M, Alovisi M, Crupi A, Ambrogio G, Asero S, et al. Can abutment with novel super-latex CrN/NbN coatings influence peri-implant tissue health and implant survival rate compared to machined abutment? 6-month results from a multi-center split-mouth randomized control trial. Materials. 2023;16(1):246.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Liu Y, Zhang H, Wu Y, Chu Z, Wu Q, et al. Silicon Nitride as a potential candidate for dental implants: osteogenic activities and antibacterial properties. J Mater Res. 2021;36:1866–82.

    Article 
    CAS 

    Google Scholar
     

  • Wananuruksawong R, Wasanapiarnpong T, Dhanesuan N, Didron PP. Microhardness and biocompatibility of silicon nitride ceramic developed for dental applications. Mater Sci Appl. 2014;5(14):1034–9.

    CAS 

    Google Scholar
     

  • Huang HL, Chang YY, Lai MC, Lin CR, Lai C-H, Shieh TM. Antibacterial TaN-Ag coatings on titanium dental implants. Surf Coat Technol. 2010;205(5):1636–41.

    Article 
    CAS 

    Google Scholar
     

  • Al Jabbari YS, Fehrman J, Barnes AC, Zapf AM, Zinelis S, Berzins DW. Titanium Nitride and nitrogen ion implanted coated dental materials. Coatings. 2012;2(3):160–78.

    Article 
    CAS 

    Google Scholar
     

  • D’Ambrosio F, Santella B, Di Palo MP, Giordano F, Lo Giudice R. Characterization of the oral microbiome in wearers of fixed and removable implant or non-implant-supported prostheses in healthy and pathological oral conditions: a narrative review. Microorganisms. 2023;11(4):1041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noumbissi S, Scarano A, Gupta S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials. 2019;12(3):368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Łępicka M, Grądzka-Dahlke M, Pieniak D, Pasierbiewicz K, Kryńska K, Niewczas A. Tribological performance of titanium nitride coatings: a comparative study on TiN-coated stainless steel and titanium alloy. Wear. 2019;422–434:68–80.

    Article 

    Google Scholar
     

  • Bonse J, Kirner S, Koter R, Pentzien S, Spaltmann D, Krüger J. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications. Appl Surf Sci. 2017;418:572–579.

    Article 
    CAS 

    Google Scholar
     

  • Datta S, Das M, Balla VK, Bodhak S, Murugesan V. Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surf Coat Technol. 2018;344:214–22.

    Article 
    CAS 

    Google Scholar
     

  • Shi X, Xu L, Munar ML, Ishikawa K. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response. Mater Sci Eng C Mater Biol Appl. 2015;49:1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity. Mater Sci Eng C Mater Biol Appl. 2016;59:542–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo NR, Ji MK, Park SW, Lee K, Bae JC, Yun KD, et al. Effect on adhesion of Porphyromonas gingivalis by titanium nitride sputter coating or plasma nitriding of titanium. J Nanosci Nanotechnol. 2017;17(4):2633–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamazaki K, Mashima I, Nakazawa F, Nakanishi Y, Ochi M. Application of dental implants coated with titanium nitride: the experimental study with Porphyromonas gingivalis infection. Int J Curr Microbiol Appl Sci. 2017;6(1):130–42.

    Article 
    CAS 

    Google Scholar
     

  • Camargo SEA, Roy T, Carey IVPH, Fares C, Ren F, Clark AE, et al. Novel coatings to minimize bacterial adhesion and promote osteoblast activity for titanium implants. J Funct Biomater. 2020;11(2):42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai Y, Xu Z, Chen J, Zhou R, Tian J, Cai Y. Biofunctionalization of microgroove surfaces with antibacterial nanocoatings. Biomed Res Int. 2020;2020:8387574.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carey PH 4th, Ren F, Jia Z, Batich CD, Camargo SE, Clark AE, et al. Antibacterial properties of charged TiN surfaces for dental implant application. ChemistrySelect. 2019;4(31):9185–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Zhao M, Dong L, Li D. Enhancement of the mechanical and biological properties on Zn/Ag co-implanted TiN via ions contents regulation. Surf Coat Technol. 2020;394:125870.

    Article 
    CAS 

    Google Scholar
     

  • Ji X, Zhao M, Dong L, Han X, Li D. Influence of Ag/Ca ratio on the osteoblast growth and antibacterial activity of TiN coatings on Ti-6Al-4V by ag and ca ion implantation. Surf Coat Technol. 2020;403:126415.

    Article 
    CAS 

    Google Scholar
     

  • Han X, Ji X, Zhao M, Li D. Mg/Ag ratios induced in vitro cell adhesion and preliminary antibacterial properties of TiN on medical Ti-6Al-4V alloy by mg and ag implantation. Surf Coat Technol. 2020;397:126020.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Li L, Zhao M, Dong L, Wu J, Li D. Biological actions of Cu/Zn coimplanted TiN on Ti-6Al-4V alloy. Biointerphases. 2019;14(5):051008.

    Article 
    PubMed 

    Google Scholar
     

  • Pranno N, La Monaca G, Polimeni A, Sarto MS, Uccelletti D, Bruni E, et al. Antibacterial activity against Staphylococcus aureus of titanium surfaces coated with graphene nanoplatelets to prevent peri-implant diseases. An in-vitro pilot study. Int J Environ Res Public Health. 2020;17(5):1568.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwalla SV, Ellepola K, Costa MCFD, Fechine GJM, Morin JLP, Neto AC, et al. Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent Mater. 2019;35(3):403–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwalla SV, Ellepola K, Silikas N, Neto AC, Seneviratne CJ, Rosa V. Persistent inhibition of Candida albicans biofilm and hyphae growth on titanium by graphene nanocoating. Dent Mater. 2021;37(2):370–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarano A, Orsini T, Di Carlo F, Valbonetti L, Lorusso F. Graphene-doped poly (methyl-methacrylate)(PMMA) implants: a micro-CT and histomorphometrical study in rabbits. Int J Mol Sci. 2021;22(3):1441.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HS, Ji MK, Jang WH, Alam K, Kim HS, Cho HS, et al. Biological effects of the Novel Mulberry Surface characterized by Micro/Nanopores and plasma-based Graphene Oxide Deposition on Titanium. Int J Nanomed. 2021;16:7307–17.

    Article 
    CAS 

    Google Scholar
     

  • Lu J, Sun J, Zou D, Song J, Yang S. Graphene-modified titanium surface enhances local growth factor adsorption and promotes osteogenic differentiation of bone marrow stromal cells. Front Bioeng Biotechnol. 2021;8:621788.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung HS, Lee T, Kwon IK, Kim HS, Hahn SK, Lee CS. Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl Mater Interfaces. 2015;7(18):9598–607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian W, Qiu J, Su J, Liu X. Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing and release-killing. Biomater Sci. 2018;6(2):304–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin J, Zhang L, Shi M, Zhang Y, Wang Q. Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity. Int J Nanomed. 2017;12:4209–24.

    Article 
    CAS 

    Google Scholar
     

  • Radhi A, Mohamad D, Abdul Rahman FS, Abdullah AM, Hasan H. Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. J Mater Res Technol. 2021;11:1290–307.

    Article 
    CAS 

    Google Scholar
     

  • Jang W, Kim HS, Alam K, Ji MK, Cho HS, Lim HP. Direct-deposited graphene oxide on dental implants for antimicrobial activities and osteogenesis. Int J Nanomed. 2021;16:5745–54.

    Article 

    Google Scholar
     

  • Zhao C, Zhang L, Wu H, Song X, Chen Y, Liu D, et al. Reactive oxygen species (ROS) dependent antibacterial effects of graphene oxide coatings. DJNB. 2022. https://doi.org/10.15251/djnb.2022.172.481.

    Article 

    Google Scholar
     

  • Guazzo R, Gardin C, Bellin G, Sbricoli L, Ferroni L, Ludovichetti FS, et al. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials. 2018;8(5):349.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, et al. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19(7–9):851–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ista LK, Fan H, Baca O, López GP. Attachment of bacteria to model solid surfaces: oligo (ethylene glycol) surfaces inhibit bacterial attachment. FEMS Microbiol Lett. 1996;142(1):59–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Razatos A, Ong Y-L, Boulay F, Elbert DL, Hubbell JA, Sharma MM, et al. Force measurements between bacteria and poly (ethylene glycol)-coated surfaces. Langmuir. 2000;16(24):9155–8.

    Article 
    CAS 

    Google Scholar
     

  • Schuler M, Owen GR, Hamilton DW, de Wild M, Textor M, Brunette DM, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials. 2006;27(21):4003–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaleli-Can G, Özgüzar HF, Kahriman S, Türkal M, Göçmen JS, Yurtçu E, et al. Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification. Mater Today Commun. 2020;25:101565.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Gao B, Liu X, Zhao X, Sun W, Ren H, et al. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly (l-lactic acid) nanoparticles on microarc-oxidized titanium implants. Int J Nanomed. 2016;11:1337–47.

    CAS 

    Google Scholar
     

  • de Avila ED, Castro AGB, Tagit O, Krom BP, Löwik D, van Well AA, et al. Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Appl Surf Sci. 2019;488:194–204.

    Article 

    Google Scholar
     

  • Hallmann L, Gerngroß MD. Chitosan and its application in dental implantology. J Stomatol Oral Maxillofac Surg. 2022;123(6):e701–7.

    Article 
    PubMed 

    Google Scholar
     

  • Xu A, Zhou L, Deng Y, Chen X, Xiong X, Deng F, et al. A carboxymethyl chitosan and peptide-decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants. J Mater Chem B. 2016;4(10):1878–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Divakar DD, Jastaniyah NT, Altamimi HG, Alnakhli YO, Alkheraif AA, Haleem S. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int J Biol Macromol. 2018;108:790–797.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polym J. 2020;138:109984.

    Article 
    CAS 

    Google Scholar
     

  • Kim S-K, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym. 2005;62(4):357–68.

    Article 
    CAS 

    Google Scholar
     

  • Cook GS, Costerton JW, Lamont RJ. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii. J Periodontal Res. 1998;33(6):323–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev. 1998;62(4):1244–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Valverde N, López-Valverde A, Cortés MP, Rodríguez C, De Sousa BM, Aragoneses JM. Bone quantification around Chitosan-Coated Titanium Dental implants: a preliminary study by Micro-CT analysis in Jaw of a Canine Model. Front Bioeng Biotechnol. 2022;10:858786.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan S-F, Kehinde T, Zhang X, Khajotia S, Schmidtke DW, Starly B. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants. Dent Mater. 2013;29(6):656–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valverde A, Pérez-Álvarez L, Ruiz-Rubio L, Olivenza MAP, Blanco MBG, Díaz-Fuentes M, et al. Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces. Carbohydr Polym. 2019;207:824–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu X, Tan L, Cui Z, Yang X, Zheng Y, et al. Rapid sterilization and accelerated wound healing using Zn2 + and graphene oxide modified g-C3N4 under dual light irradiation. Adv Funct Mater. 2018;28(30):1800299.

    Article 

    Google Scholar
     

  • Su C, Tseng CM, Chen LF, You BH, Hsu BC, Chen SS. Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films. 2006;498(1–2):259–65.

    Article 
    CAS 

    Google Scholar
     

  • Carinci F, Grecchi E, Bignozzi CA, Murmura G, Piattelli A, Scarano A. Bactercline®-coated implants: clinical results up to 1 year after loading from a controlled clinical trial. Dent Res J. 2012;9(Suppl 2):S142–6.


    Google Scholar
     

  • Pantaroto HN, Ricomini-Filho AP, Bertolini MM, da Silva JHD, Neto NFA, Sukotjo C, et al. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dent Mater. 2018;34(7):e182–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suketa N, Sawase T, Kitaura H, Naito M, Baba K, Nakayama K, et al. An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin Implant Dent Relat Res. 2005;7(2):105–11.

    Article 
    PubMed 

    Google Scholar
     

  • Györgyey Á, Janovák L, Ádám A, Kopniczky J, Tóth KL, Deák Á, et al. Investigation of the in vitro photocatalytic antibacterial activity of nanocrystalline TiO2 and coupled TiO2/Ag containing copolymer on the surface of medical grade titanium. J Biomater Appl. 2016;31(1):55–67.

    Article 
    PubMed 

    Google Scholar
     

  • Venkei A, Ungvári K, Eördegh G, Janovák L, Urbán E, Turzó K. Photocatalytic enhancement of antibacterial effects of photoreactive nanohybrid films in an in vitro Streptococcus mitis model. Arch Oral Biol. 2020;117:104837.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Qi M, Li X, Liu X, Wang L, Yu W, et al. TiO2 nanotubes modified with au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J Electroanal Chem. 2019;842:66–73.

    Article 
    CAS 

    Google Scholar
     

  • Iwatsu M, Kanetaka H, Mokudai T, Ogawa T, Kawashita M, Sasaki K. Visible light-induced photocatalytic and antibacterial activity of N‐doped TiO2. J Biomed Mater Res B Appl Biomater. 2020;108(2):451–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgess DJ. Tissue penetration of photodynamic therapy. Nat Rev Cancer. 2012;12:737.


    Google Scholar
     

  • Liu J, Yu M, Zeng G, Cao J, Wang Y, Ding T, et al. Dual antibacterial behavior of a curcumin–upconversion photodynamic nanosystem for efficient eradication of drug-resistant bacteria in a deep joint infection. J Mater Chem B. 2018;6(47):7854–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu X, Li B, Zheng Y, Han Y, Chen D-f, et al. Near-infrared light triggered phototherapy and immunotherapy for elimination of methicillin-resistant Staphylococcus aureus biofilm infection on bone implant. ACS Nano. 2020;14(7):8157–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Wang Y, Teng W, Zhou X, Ye Y, Zhou H, et al. An orthobiologics-free strategy for synergistic photocatalytic antibacterial and osseointegration. Biomaterials. 2021;274:120853.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahi RG, Albuquerque MTP, Münchow EA, Blanchard SB, Gregory RL, Bottino M. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental impClant coating. Odontology. 2017;105(3):354–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater. 2021;6(8):2569–612.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao J, Zhang S, Qu X, Yue B. Recent advances in research on antibacterial metals and alloys as implant materials. Front Cell Infect Microbiol. 2021;11:693939.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler L, Masia N, Cornish LA, Chown LH, Engqvist H, Norgren S, et al. Development of antibacterial Ti-Cux alloys for dental applications: efects of ageing for alloys with up to 10 wt% cu. Materials. 2019;12(23):4017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fowler L, Engqvist H, Öhman-Mägi C. Effect of copper ion concentration on bacteria and cells. Materials. 2019;12(22):3798.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Tang Y, Zhang S, Liu H, Wang Z, Li Y, et al. Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact Mater. 2022;8:381–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Zinelis S, Thomas A, Syres K, Silikas N, Eliades G. Surface characterization of zirconia dental implants. Dent Mater. 2010;26(4):295–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gahlert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res. 2007;18(5):662–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez AE, Monzavi M, Yokoyama CL, Nowzari H. Zirconia dental implants: a clinical and radiographic evaluation. J Esthet Restor Dent. 2018;30(6):538–44.

    Article 
    PubMed 

    Google Scholar
     

  • Tetè S, Mastrangelo F, Bianchi A, Zizzari V, Scarano A. Collagen fiber orientation around machined titanium and zirconia dental implant necks: an animal study. Int J Oral Maxillofac Implants. 2009;24(1):52–8.

    PubMed 

    Google Scholar
     

  • Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am. 2006;50(3):323–38.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Q, Yao C, Yuan C, Zhang H, Liu L, Zhang Y, et al. Evaluation of surface properties and shear bond strength of zirconia substructure after sandblasting and acid etching. Mater Res Express. 2020;7(9):095403.

    Article 
    CAS 

    Google Scholar
     

  • Sun Y, Sun J, Wu X, Li Y, Li X, Li R, et al. Mechanism of zirconia microgroove surface structure for osseointegration. Mater Today Adv. 2021;12:100159.

    Article 
    CAS 

    Google Scholar
     

  • Xu J, Ji M, Li L, Wu Y, Yu Q, Chen M. Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing. Ceram Int. 2022;48(3):3702–10.

    Article 
    CAS 

    Google Scholar
     

  • Yamada R, Nozaki K, Horiuchi N, Yamashita K, Nemoto R, Miura H, et al. Ag nanoparticle–coated zirconia for antibacterial prosthesis. Mater Sci Eng C Mater Biol Appl. 2017;78:1054–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin L, Nakanishi Y, Alao A-R, Song X-F, Abduo J, Zhang Y. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP. 2017;65:284–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Liu X, Xiong Z, Huang Q, Yang X, Yan H, et al. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1123–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saino E, Grandi S, Quartarone E, Maliardi V, Galli D, Bloise N, et al. In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass. Eur Cell Mater. 2011;21(2):59–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang P, Ma K, Cai X, Huang D, Yang X, Ran J, et al. Enhanced antibacterial activity and biocompatibility of zinc-incorporated organic-inorganic nanocomposite coatings via electrophoretic deposition. Colloids Surf B Biointerfaces. 2017;160:628–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao L, Wu X, Wu S, Pan X, Tu J, Chen M, et al. Atomic layer deposition of zinc oxide on microrough zirconia to enhance osteogenesis and antibiosis. Ceram Int. 2019;45(18):24757–67.

    Article 
    CAS 

    Google Scholar
     

  • Cheng MS, Salamanca E, Lin JCY, Pan YH, Wu YF, Teng NC, et al. Preparation of Calcium phosphate compounds on Zirconia surfaces for Dental Implant Applications. Int J Mol Sci. 2022;23(12):6675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldschmidt G-M, Krok-Borkowicz M, Zybała R, Pamuła E, Telle R, Conrads G, et al. Biomimetic in situ precipitation of calcium phosphate containing silver nanoparticles on zirconia ceramic materials for surface functionalization in terms of antimicrobial and osteoconductive properties. Dent Mater. 2021;37(1):10–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirmanidou Y, Sidira M, Bakopoulou A, Tsouknidas A, Prymak O, Papi R, et al. Assessment of cytotoxicity and antibacterial effects of silver nanoparticle-doped titanium alloy surfaces. Dent Mater. 2019;35(9):e220–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4(7):4317–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu J, Geng H, Wang D, Qian S, Zhu H, Qiao Y, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium. ACS Appl Mater Interfaces. 2017;9(14):12253–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Hu H, Li Z, Shen Y, Xu Y, Zhang G, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl Mater Interfaces. 2019;11(43):39470–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Wu J, Qi X, He Q, Liusman C, Lu G, et al. Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing. Small. 2013;9(3):382–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4(6):3181–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Park M-R, Kwon D-N, et al. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem. 2013;19(4):1280–8.

    Article 
    CAS 

    Google Scholar
     

  • Schwitalla A, Müller W-D. PEEK dental implants: a review of the literature. J Oral Implantol. 2013;39(6):743–49.

    Article 
    PubMed 

    Google Scholar
     

  • Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether‐ether‐ketone dental implants. J Biomed Mater Res B Appl Biomater. 2012;100(4):1044–52.

    Article 
    PubMed 

    Google Scholar
     

  • Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12–9.

    Article 
    PubMed 

    Google Scholar
     

  • Suphangul S, Rokaya D, Kanchanasobhana C, Rungsiyakull P, Chaijareenont P. PEEK biomaterial in long-term provisional implant restorations: a review. J Funct Biomater. 2022;13(2):33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieminen T, Kallela I, Wuolijoki E, Kainulainen H, Hiidenheimo I, Rantala I. Amorphous and crystalline polyetheretherketone: mechanical properties and tissue reactions during a 3-year follow‐up. J Biomed Mater Res A. 2008;84(2):377–83.

    Article 
    PubMed 

    Google Scholar
     

  • Huang R, Shao P, Burns C, Feng X. Sulfonation of poly (ether ether ketone)(PEEK): kinetic study and characterization. J Appl Polym Sci. 2001;82(11):2651–60.

    Article 
    CAS 

    Google Scholar
     

  • Liu C, Bai J, Wang Y, Chen L, Wang D, Ni S, et al. The effects of three cold plasma treatments on the osteogenic activity and antibacterial property of PEEK. Dent Mater. 2021;37(1):81–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torstrick FB, Lin AS, Potter D, Safranski DL, Sulchek TA, Gall K, et al. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials. 2018;185:106–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khoury J, Kirkpatrick SR, Maxwell M, Cherian RE, Kirkpatrick A, Svrluga RC. Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instrum Methods Phys Res B. 2013;307:630–634.

    Article 
    CAS 

    Google Scholar
     

  • Khoury J, Maxwell M, Cherian RE, Bachand J, Kurz AC, Walsh M, et al. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology. J Biomed Mater Res B Appl Biomater. 2017;105(3):531–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajami S, Coathup M, Khoury J, Blunn G. Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique. J Biomed Mater Res B Appl Biomater. 2017;105(6):1438–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo C, Lu R, Wang X, Chen S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. J Mater Sci Mater Med. 2021;32(11):135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang S, Yu W, Zhang J, Han X, Wang J, Sun D, et al. The antibacterial property of zinc oxide/graphene oxide modified porous polyetheretherketone against S. sanguinis, F. nucleatum and P. gingivalis. Biomed Mater. 2022;17(2). https://doi.org/10.1088/1748-605X/ac51ba.

  • Ma Z, Li L, Shi X, Wang Z, Guo M, Wang Y, et al. Enhanced osteogenic activities of polyetheretherketone surface modified by poly (sodium p-styrene sulfonate) via ultraviolet‐induced polymerization. J Appl Polym Sci. 2020;137(38):49157.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Y, Liu L, Xiao L, Zhang Q, Liu Y. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Colloids Surf B Biointerfaces. 2019;173:591–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang L, Zhao Y, Jin G, Lu T, Li J, Qiao Y, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials. 2016;83:115–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan T, Jiao Z, Guo M, Wang Z, Wan Y, Lin K, et al. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioact Mater. 2020;5(4):1004–17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, He S, Wu X, Liang S, Mu Z, Wei J, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014;35(25):6758–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimizu T, Fujibayashi S, Yamaguchi S, Yamamoto K, Otsuki B, Takemoto M, et al. Bioactivity of sol–gel-derived TiO2 coating on polyetheretherketone: in vitro and in vivo studies. Acta Biomater. 2016;35:305–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimizu T, Fujibayashi S, Yamaguchi S, Otsuki B, Okuzu Y, Matsushita T, et al. In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model. PLoS One. 2017;12(9):e0184495.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, et al. Nano-Hydroxyapatite‐coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res A. 2013;101(2):465–71.

    Article 
    PubMed 

    Google Scholar
     

  • Lee JH, Jang HL, Lee KM, Baek H-R, Jin K, Hong KS, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater. 2013;9(4):6177–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjellin P, Vikingsson L, Danielsson K, Johansson P, Wennerberg A. A nanosized zirconium phosphate coating for peek implants and its effect in vivo. Materialia. 2020;10:100645.

    Article 
    CAS 

    Google Scholar
     

  • Dai Y, Guo H, Chu L, He Z, Wang M, Zhang S, et al. Promoting osteoblasts responses in vitro and improving osteointegration in vivo through bioactive coating of nanosilicon nitride on polyetheretherketone. J Orthop Translat. 2020;24:198–208.

    Article 
    PubMed 

    Google Scholar
     

  • Meng Z, Liu Y, Wu D. Effect of sulfur dioxide inhalation on cytokine levels in lungs and serum of mice. Inhal Toxicol. 2005;17(6):303–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Z, Qin G, Zhang B. DNA damage in mice treated with sulfur dioxide by inhalation. Environ Mol Mutagen. 2005;46(3):150–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Z, Qin G, Zhang B, Bai J. DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis. 2004;19(6):465–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmén A, et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted cp titanium endosseous implants. Biomaterials. 2006;27(6):926–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science. 1983;222(4621):330–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langping LHWXW, Hongjun WXA. Influence of Surface Modification of Ti by Fluorine Ion-Implantation on formation and expression of Collagen-I on osteoblast. Acta Metall Sin. 2008;44(12):1485–90.


    Google Scholar
     

  • Zheng X, Cheng X, Wang L, Qiu W, Wang S, Zhou Y, et al. Combinatorial effects of arginine and fluoride on oral bacteria. J Dent Res. 2015;94(2):344–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campoccia D, Arciola CR, Cervellati M, Maltarello MC, Montanaro L. In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials. 2003;24(4):587–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23(3):343–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal–organic framework-based stimuli‐responsive systems for drug delivery. Adv Sci. 2018;6(1):1801526.

    Article 

    Google Scholar
     

  • Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, et al. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev. 2022;51(14):6126–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen‐species‐responsive drug delivery systems: promises and challenges. Adv Sci. 2016;4(1):1600124.

    Article 

    Google Scholar
     

  • Fu J, Zhu W, Liu X, Liang C, Zheng Y, Li Z, et al. Self-activating anti-infection implant. Nat Commun. 2021;12(1):6907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng L, Zhou B, Qi M, Sun X, Dong S, Sun Y, et al. A coating strategy on titanium implants with enhanced photodynamic therapy and CO-based gas therapy for bacterial killing and inflammation regulation. Chin Chem Lett. 2024;35(2):108648.

    Article 
    CAS 

    Google Scholar
     

  • Su K, Tan L, Liu X, Cui Z, Zheng Y, Li B, et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano. 2020;14(2):2077–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv K, Yao L, Fu X, Gao X, Wang H, Zhou Y, et al. Indocyanine green-equipped upconversion nanoparticles/CeO2 trigger mutually reinforced dual photodynamic therapy. Nano Today. 2023;52:101964.

    Article 
    CAS 

    Google Scholar
     

  • Mayorga-Martinez CC, Zelenka J, Klima K, Mayorga-Burrezo P, Hoang L, Ruml T, et al. Swarming magnetic photoactive microrobots for dental implant biofilm eradication. ACS Nano. 2022;16(6):8694–703.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayed ME, Mugri MH, Almasri MA, Al-Ahmari MM, Bhandi S, Madapusi TB, et al. Role of stem cells in augmenting dental implant osseointegration: a systematic review. Coatings. 2021;11(9):1035.

    Article 
    CAS 

    Google Scholar
     

  • Misawa MYO, Huynh-Ba G, Villar GM, Villar CC. Efficacy of stem cells on the healing of Peri‐implant defects: systematic review of preclinical studies. Clin Exp Dent Res. 2016;2(1):18–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Mou S, Hou J, Fang H, Zeng Y, Sun J, et al. Simple application of adipose-derived stem cell-derived extracellular vesicles coating enhances cytocompatibility and osteoinductivity of titanium implant. Regen Biomater. 2021;8(1):rbaa038.

    Article 
    PubMed 

    Google Scholar
     

  • Zhai M, Zhu Y, Yang M, Mao C. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv Sci. 2020;7(19):2001334.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, et al. Neuro-bone tissue engineering: multiple potential translational strategies between nerve and bone. Acta Biomater. 2022;153:1–12.

    Article 
    PubMed 

    Google Scholar
     

  • Mokarram N, Bellamkonda RV. A perspective on immunomodulation and tissue repair. Ann Biomed Eng. 2014;42(2):338–51.

    Article 
    PubMed 

    Google Scholar
     

  • Lee JH, Parthiban P, Jin GZ, Knowles JC, Kim HW. Materials roles for promoting angiogenesis in tissue regeneration. Prog Mater Sci. 2021;117:100732.

    Article 
    CAS 

    Google Scholar
     

  • Xie Y, Hu C, Feng Y, Li D, Ai T, Huang Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater. 2020;7(3):233–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao B, Lan H, Zhou X, Lin C, Qin X, Wu M, et al. Regulation of TiO2 nanotubes on titanium implants to orchestrate osteo/angio-genesis and osteo-immunomodulation for boosted osseointegration. Mater Des. 2023;233:112268.

    Article 
    CAS 

    Google Scholar
     

  • Wang G, Tang K, Meng Z, Liu P, Mo S, Mehrjou B, et al. A quantitative bacteria monitoring and killing platform based on electron transfer from bacteria to a semiconductor. Adv Mater. 2020;32(39):2003616.

    Article 
    CAS 

    Google Scholar
     

  • Chen B, Xiang H, Pan S, Yu L, Xu T, Chen Y. Advanced theragenerative biomaterials with therapeutic and regeneration multifunctionality. Adv Funct Mater. 2020;30(34):e2002621.

    Article 

    Google Scholar
     

  • Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules. 2019;24(10):1991.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, et al. Stimuli-responsive antibacterial materials: molecular structures, design principles, and biomedical applications. Adv Sci. 2022;9(13):e2104843.

    Article 

    Google Scholar
     

  • Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10(1):17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar