December 9, 2024

N-Chiropractors

A Passion for Better Health

Exploring the contribution of lifestyle to the impact of education on the risk of cancer through Mendelian randomization analysis

Exploring the contribution of lifestyle to the impact of education on the risk of cancer through Mendelian randomization analysis
  • Heron, M. & Anderson, R. N. Changes in the leading cause of death: Recent patterns in heart disease and cancer mortality. NCHS Data Brief. 254, 1–8 (2016).


    Google Scholar
     

  • Gjertsen, F., Bruzzone, S. & Griffiths, C. E. Burden of suicide presented as one of the leading causes of death: Uncover facts or misrepresent statistics?. J. Glob. Health https://doi.org/10.7189/jogh.09.010401 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Leuven, E., Plug, E. & Ronning, M. Education and cancer risk. Labour Econ. 43, 106–121 (2016).

    Article 

    Google Scholar
     

  • Siegel, R. L. et al. An assessment of progress in cancer control. CA Cancer J. Clin. 68(5), 329–339 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bingham, S. & Riboli, E. Diet and cancer – The European prospective investigation into cancer and nutrition. Nat. Rev. Cancer 4(3), 206–215 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, L., Bhatnagar, P. & Townsend, N. Comparing trends in mortality from cardiovascular disease and cancer in the United Kingdom, 1983–2013: Joinpoint regression analysis. Popul. Health Metr. https://doi.org/10.1186/s12963-017-0141-5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 35(4), 407–411 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shohaimi, S. et al. Residential area deprivation predicts fruit and vegetable consumption independently of individual educational level and occupational social class: A cross sectional population study in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk). J. Epidemiol. Commun. H 58(8), 686–691 (2004).

    Article 

    Google Scholar
     

  • Teng, A. M., Atkinson, J., Disney, G., Wilson, N. & Blakely, T. Changing socioeconomic inequalities in cancer incidence and mortality: Cohort study with 54 million person-years follow-up 1981–2011. Int. J. Cancer 140(6), 1306–1316 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirowsky, J. & Ross, C. E. Education, Social Status, and Health 1st edn. (Routledge, 2003).


    Google Scholar
     

  • Boylan, S. et al. Socio-economic circumstances and food habits in Eastern, Central and Western European populations. Public Health Nutr. 14(4), 678–687 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Adler, N. E. et al. Socioeconomic status and health. The challenge of the gradient. Am. Psychol. 49(1), 15–24 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warnakulasuriya, S. Significant oral cancer risk associated with low socioeconomic status. Evid. Based Dent. 10(1), 4–5 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Geyer, S., Hemstrom, O., Peter, R. & Vagero, D. Education, income, and occupational class cannot be used interchangeably in social epidemiology. Empirical evidence against a common practice. J. Epidemiol. Community Health 60(9), 804–10 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ovrum, A. Socioeconomic status and lifestyle choices: Evidence from latent class analysis. Health Econ. 20(8), 971–984 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Nordahl, H. et al. Education and cause-specific mortality: The mediating role of differential exposure and vulnerability to behavioral risk factors. Epidemiology 25(3), 389–396 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gallo, V. et al. Social inequalities and mortality in Europe–results from a large multi-national cohort. PLoS One 7(7), e39013 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hastert, T. A., Ruterbusch, J. J., Beresford, S. A., Sheppard, L. & White, E. Contribution of health behaviors to the association between area-level socioeconomic status and cancer mortality. Soc. Sci. Med. 148, 52–58 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lund Nilsen, T. I., Johnsen, R. & Vatten, L. J. Socio-economic and lifestyle factors associated with the risk of prostate cancer. Br. J. Cancer 82(7), 1358–1363 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conway, D. I. et al. Socioeconomic inequalities and oral cancer risk: A systematic review and meta-analysis of case-control studies. Int. J. Cancer 122(12), 2811–2819 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jepsen, P., Johnsen, S. P., Gillman, M. W. & Sorensen, H. T. Interpretation of observational studies. Heart 90(8), 956–960 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernan, M. A. The hazards of hazard ratios. Epidemiology 21(1), 13–15 (2010).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuit, A. J., van Loon, A. J., Tijhuis, M. & Ocke, M. Clustering of lifestyle risk factors in a general adult population. Prev. Med. 35(3), 219–224 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, G. D. & Ebrahim, S. “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease?. Int. J. Epidemiol. 32(1), 1–22 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Blakely, T., McKenzie, S. & Carter, K. Misclassification of the mediator matters when estimating indirect effects. J. Epidemiol. Community Health 67(5), 458–466 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Davies, N. M., Holmes, M. V. & Davey, S. G. Reading Mendelian randomization studies: A guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thanassoulis, G. & O’Donnell, C. J. Mendelian Randomization nature’s randomized trial in the post-genome era. JAMA J. Am. Med. Assoc. 301(22), 2386–2388 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sudlow, C. et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PloS Med. 12(3), e1001779 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54(4), 437 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612(7941), 720 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liu, M. Z. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51(2), 237 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wootton, R. E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: A Mendelian randomization study. Psychol. Med. 50(14), 2435–2443 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Leffondré, K., Abrahamowicz, M., Xiao, Y. L. & Siemiatycki, J. Modelling smoking history using a comprehensive smoking index: Application to lung cancer. Stat. Med. 25(24), 4132–4146 (2006).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in similar to 700,000 individuals of European ancestry. Hum. Mol. Genet. 27(20), 3641–3649 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsworth B L, M, Alexander, T, Liu, Y, Matthews, P, Hallett, J, Bates, P, Palmer, T, Haberland, V, Smith, G D, Zheng, J., Haycock, P, Gaunt, T R, Hemani, G. The MRC IEU OpenGWAS data infrastructure. BioRxiv (2020).

  • Genomes Project C et al. An integrated map of genetic variation from 1092 human genomes. Nature 491(7422), 56–65 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 21(3), 223–242 (2012).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37(7), 658–665 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Smith, G. D. & Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44(2), 512–525 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Smith, G. D., Haycock, P. C. & Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40(4), 304–314 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50(5), 693 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mounier, N. & Kutalik, Z. Bias correction for inverse variance weighting Mendelian randomization. Genet. Epidemiol. 47(4), 314–331 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgess, S., Dudbridge, F. & Thompson, S. G. Re: Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181(4), 290–291 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Burgess, S., Daniel, R. M., Butterworth, A. S. & Thompson, S. G. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 44(2), 484–95 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sanderson, E. Multivariable Mendelian randomization and mediation. CSH Perspect. Med. https://doi.org/10.1101/cshperspect.a038984 (2021).

    Article 

    Google Scholar
     

  • RC T. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020).

  • Hemani, G. Z. J. et al. The MR-base platform supports systematic causal inference across the human phenome. elife https://doi.org/10.7554/eLife.34408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon M L, T, Gordon, M M. R Package ‘forestplot’. Advanced Forest Plot Using ‘grid’ Graphics (2016).

  • Siegel, R., Ward, E., Brawley, O. & Jemal, A. Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61(4), 212–236 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Gornick, M. E., Eggers, P. W. & Riley, G. F. Associations of race, education, and patterns of preventive service use with stage of cancer at time of diagnosis. Health Serv. Res. 39(5), 1403–1427 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mouw, T. et al. Education and risk of cancer in a large cohort of men and women in the United States. PLoS One 3(11), e3639 (2008).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cavelaars, A. E. et al. Educational differences in smoking: International comparison. BMJ 320(7242), 1102–1107 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Walque, D. Does education affect smoking behaviors? Evidence using the Vietnam draft as an instrument for college education. J. Health Econ. 26(5), 877–895 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • He, J. B., Chen, X. J., Fan, X. T., Cai, Z. H. & Huang, F. Is there a relationship between body mass index and academic achievement? A meta-analysis. Public Health 167, 111–124 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • De Irala-Estevez, J. et al. A systematic review of socio-economic differences in food habits in Europe: Consumption of fruit and vegetables. Eur. J. Clin. Nutr. 54(9), 706–714 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooke, L. J. et al. Demographic, familial and trait predictors of fruit and vegetable consumption by pre-school children. Public Health Nutr. 7(2), 295–302 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosoff, D. B. et al. Educational attainment impacts drinking behaviors and risk for alcohol dependence: Results from a two-sample Mendelian randomization study with ~780,000 participants. Mol. Psychiatr. 26(4), 1119–1132 (2021).

    Article 
    CAS 

    Google Scholar
     

  • O’Keeffe, L. M. et al. Smoking as a risk factor for lung cancer in women and men: A systematic review and meta-analysis. BMJ Open 8(10), e021611 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minami, Y. & Tateno, H. Associations between cigarette smoking and the risk of four leading cancers in Miyagi Prefecture, Japan: A multi-site case-control study. Cancer Sci. 94(6), 540–547 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pesch, B. et al. Cigarette smoking and lung cancer–relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int. J. Cancer 131(5), 1210–1219 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsson, S. C. et al. Smoking, alcohol consumption, and cancer: A mendelian randomization study in UK Biobank and international genetic consortia participants. PloS Med. 17(7), e1003178 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherubl, H. Excess body weight and gastrointestinal cancer risk. Visc. Med. 37(4), 261–266 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vithayathil, M. et al. Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia: A mendelian randomization study. PloS Med. 18(7), e1003706 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menvielle, G. et al. The role of smoking and diet in explaining educational inequalities in lung cancer incidence. J. Natl. Cancer Inst. 101(5), 321–330 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C., Yang, T., Guo, X. F. & Li, D. The associations of fruit and vegetable intake with lung cancer risk in participants with different smoking status: A meta-analysis of prospective cohort studies. Nutrients 11(8), 1791 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieira, A. R. et al. Fruits, vegetables and lung cancer risk: A systematic review and meta-analysis. Ann. Oncol. 27(1), 81–96 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Citrus fruit intake and lung cancer risk: A meta-analysis of observational studies. Pharmacol. Res. 166, 105430 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 186(9), 1026–34 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. H., Han, K., Hong, J. Y., Park, Y. S. & Park, J. O. Association between alcohol consumption and pancreatic cancer risk differs by glycaemic status: A nationwide cohort study. Eur. J. Cancer. 163, 119–27 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. Y. et al. Alcohol consumption and risk of cardiovascular disease, cancer and mortality: a prospective cohort study. Nutr. J. 20(1), (2021).

  • Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42(5), 1497–1501 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Burgess, S. & Thompson, S. G. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat. Med. 30(11), 1312–1323 (2011).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Rees, J. M. B., Wood, A. M. & Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat. Med. 36(29), 4705–4718 (2017).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar